Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Neurol ; 270(4): 2149-2161, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2174129

ABSTRACT

BACKGROUND: Evaluation of the application of CSF real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance to investigate test accuracy, influencing factors, and associations with disease incidence. METHODS: In a prospective surveillance study, CSF real-time quaking-induced conversion was performed in patients with clinical suspicion of prion disease (2014-2022). Clinically or histochemically characterized patients with sporadic Creutzfeldt-Jakob disease (n = 888) and patients with final diagnosis of non-prion disease (n = 371) were included for accuracy and association studies. RESULTS: The overall test sensitivity for sporadic Creutzfeldt-Jakob disease was 90% and the specificity 99%. Lower sensitivity was associated with early disease stage (p = 0.029) and longer survival (p < 0.001). The frequency of false positives was significantly higher in patients with inflammatory CNS diseases (3.7%) than in other diagnoses (0.4%, p = 0.027). The incidence increased from 1.7 per million person-years (2006-2017) to 2.0 after the test was added to diagnostic the criteria (2018-2021). CONCLUSION: We validated high diagnostic accuracy of CSF real-time quaking-induced conversion but identified inflammatory brain disease as a potential source of (rare) false-positive results, indicating thorough consideration of this condition in the differential diagnosis of Creutzfeldt-Jakob disease. The surveillance improved after amendment of the diagnostic criteria, whereas the incidence showed no suggestive alterations during the COVID-19 pandemic.


Subject(s)
COVID-19 , Creutzfeldt-Jakob Syndrome , Humans , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/epidemiology , Prospective Studies , Pandemics , Sensitivity and Specificity
2.
Front Mol Neurosci ; 15: 975619, 2022.
Article in English | MEDLINE | ID: covidwho-2142143

ABSTRACT

The accumulation and deposition of misfolded α-synuclein (α-Syn) aggregates in the brain is the central event in the pathogenesis of α-synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and multiple-system atrophy. Currently, the diagnosis of these diseases mainly relies on the recognition of advanced clinical manifestations. Differential diagnosis among the various α-synucleinopathies subtypes remains challenging. Misfolded α-Syn can template its native counterpart into the same misfolded one within or between cells, behaving as a prion-like seeding. Protein-misfolding cyclic amplification and real-time quaking-induced conversion are ultrasensitive protein amplification assays initially used for the detection of prion diseases. Both assays showed high sensitivity and specificity in detection of α-synucleinopathies even in the pre-clinical stage recently. Herein, we collectively reviewed the prion-like properties of α-Syn and critically assessed the detection techniques of α-Syn-seeding activity. The progress of test tissues, which tend to be less invasive, is presented, particularly nasal swab, which is now widely known owing to the global fight against coronavirus disease 2019. We highlight the clinical application of α-Syn seeding in early and non-invasive diagnosis. Moreover, some promising therapeutic perspectives and clinical trials targeting α-Syn-seeding mechanisms are presented.

SELECTION OF CITATIONS
SEARCH DETAIL